Incorporating Biometric Quality
In Multi-Bilometrics
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Motivation (I)

e Image quality:
@ Performance drop under degraded image quality.

¥ Big interest in characterizing this degradation, (e.g.,
NIST FpVTE 2003, FVC2004, BQW)
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Motivation (II)

e Multi-algorithm fingerprint recognition:
@ A number of works have shown the benefits of combining
multiple approaches for fingerprint recognition.

@ Different levels of combination: sensor-level, feature-level,
score-level, decision-level.
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We focus on score-level fusion.
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Motivation (IIT)

e Quality-based multimodal biometrics:

@ Recent works have shown the benefits of incorporating biometric

quality when combining different biometric traits.
@ System model for score-level quality-based fusion:
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Quality-based multi-algorithm fingerprint verification
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Fingerprint Technology Evaluations

e Recent fingerprint technology evaluations:

@ Fingerprint Vendor Technology Evaluation (FpVTE2003)
e Organized by NIST.

@ Fingerprint Verification Competitions (FVC2000, 2002, 2004)

e QOrganized by BioLab (University of Bologna), National Biometric Test
Center (San Jose State Univ.) and PRIP Lab. (Michigan State Univ.).

We focus on Fingerprint Verification Competition 2004.
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FVC2004: Data

@ Fingerprint data: 100 fingers x 8 impressions x 4 sensors
@ Different DBs correspond to different fingers.

¥ Image quality is low to medium due to exaggerated plastic
distortions, and artificial dryness and moistness.
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FVC2004: Participants

@ Open (41 algorithms) and light (26 algorithms) sub-competitions.
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Description of FVC2004
submissions, as provided by
the participants, following
the taxonomy proposed in:

D. Maltoni, D. Maio, A. K.
Jain, S. Prabhakar,
Handbook of Fingerprint
Recognition, Springer, 2003.

J

@ Details in http://bias.csr.unibo.it/fvc2004/ including pointers
to the identities of non-anonymous participants, individual results,
and comparative charts.




FVC2004: Performance Evaluation

@ Experimental protocol (for each DB):
e Genuine: (100 x 8 x 7 ) / 2 = 2800 genuine matching scores
e Impostor: ( 100 x 99 ) / 2 = 4950 impostor matching scores
@ All matching scores in the [0,1] range.

@ A comprehensive set of performance indicators is reported: score
histograms, verification error rates at different operational points,
computing time, memory allocated, and others.

@ We focus on the open sub-competition, with the EER as the
indicator for the experimental comparisons.

@ Details in http://bias.csr.unibo.it/fvc2004/ and

R. Cappelli, D. Maio, D. Maltoni, J.L. Wayman, A.K. Jain, “Performance
Evaluation of Fingerprint Verification Systems”, IEEE Trans. PAMI, Jan 2006.




FVC2004: Results

@ FVC2000 (natural acquisition, 11 algorithms):
e Winner 1.73% EER, average of first 5 systems 4.52% EER.

@ FVC2002 (natural acquisition, 31 algorithms):
e Winner 0.19% EER, average of first 5 systems 0.52% EER.

@ FVC2004 (exaggerated distortion, 41 algorithms):
e Winner 2.07% EER, average of first 5 systems 2.36% EER.




FVC2006: Announcement
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¥ Some changes with respect to previous editions:
e DATA: Larger DBs, 150 fingers, 12 impressions per finger.
e DATA: Most difficult fingers from a larger pool of fingers (NFIQ).
e PLANNED STUDIES: Interoperability, Quality.

IMPORTANT DATES:
Participant registration deadline: June 30, 2006
Development databases available online:  July 1, 2006
Algorithm submission deadline: October 31, 2006

Expected publication of the results: January, 2007




How to Overcome Low Quality Images?

@ New sensors.
e Multi-Spectral Imaging.
e Touch-less Biometric Sensors (TBS):

@ Multi-algorithm fusion.

3D movie




FVC2004: Multi-Algorithm Fingerprint
Verification

Z

FUSION
e

QUALITY

J. Fierrez-Aqguilar, L. Nanni, J. Ortega-Garcia, R. Cappelli and D. Maltoni, "Combining multiple matchers for
fingerprint verification: a case study in FVC2004", Lecture Notes in Computer Science 3617: 1035-1042, 2005.



FVC2004: Multi-Algorithm Fusion

@ Performance improves with the fusion of up to 7 systems.
@ Performance deteriorates when combining more than 10 systems.
@ The largest improvement is obtained for the fusion of 2-3 systems.



FVC2004: Multi-Algorithm Fusion

@ Some interesting examples:
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Matching Strategy
Based on:

e Ridge correlation
e Minutiae Local

e Minutiae Global
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System Architecture

(Minutiae-Based)
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Assumptions:

e Matching scores s,, and s, are already normalized to the range [0,1].

e Performance of one matcher (minutiae) drops significantly as compared
to the other one under image quality degradation.
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NOTE: For more general formulations (n matchers) using Bayesian theory and SVMs
see Bigun et al. (ICIAP 2003) and Fierrez-Aguilar et al. (PR 2005), respectively.
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Automatic Fingerprint Quality Assessment

e Based on global
features:

¥ A global
measure of
quality is
computed for
each image.

¥ The quality is
related to the

energy
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Y. Chen, S. Dass, and A. Jain, “Fingerprint Quality Indices for Predicting Authentication Performance”, AVBPA 2005.



Minutiae-Based Matcher
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Ridge-Based Matcher
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Database: MCYT

e Scanner: UareU from Digital Persona.
e Fingerprint image: 500dpi, 400 x 256 pixels.
e Fingerprint corpus: 750 fingers (75 subjects) x 10 impressions.
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Experimental Protocol

Enroll: one impression of each finger.
Genuine matchings: remaining 9 impressions (9 x 750 trials).

Impostor matchings: 1 impression from all the remaining fingers
(750 x 749 trials)

All fingers are classified into 5 equal-sized disjoint quality
groups, based on a quality ranking.

The quality ranking is based on the average quality of the
genuine matchings corresponding to each finger:

Qmatching = \/Qenrolled . Qtest

where Q.,..s aNd Q.. are global image quality measures.




Performance Comparison for Quality Groups
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Observations:

e The performance of the minutia-based matcher drops significantly under
degraded image quality.

e The performance of the ridge-based matcher is robust to the global image quality
measure considered.

e Sum fusion outperforms the best system only for good quality images.
e Quality-based fusion outperforms the best system in all cases.



Fusion Results

All (70U TIngers X 10U Impressions, o/oU FHR + 5b1/50U FA maicnings)
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e Due to large differences in performance between the two systems, sum fusion
improves the performance only in a region of the DET curve.

e Incorporating the image quality in the sum fusion leads to improved performance
in all cases.
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Conclusions (I)

e Large performance drop in FVC2004 with respect to previous editions
due to image quality (exaggerated distortion).

e This can be overcome by multi-algorithm fusion (reduced number of
heterogeneous systems).

e Multi-algorithm fusion can be further improved by incorporating image
quality:

@ Quality-based fusion of and matchers.
¥ Global quality measure based on power spectrum.

@ Large corpus comprising 7500 images from 750 fingers.



Conclusions (1I)

Experimental findings:

@ The approach outperforms the
approach in low quality image conditions.

@ Both approaches obtain similar performance in good quality
conditions.

@ The approach is robust to quality image degradation
(almost independent of image quality) while the
approach experiments a large performance drop.

@ Quality-based fusion overcomes the problem of performance drop of
one component in multi-algorithm fingerprint verification.
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